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By extending Anderson’s model for a single impurity in a metal to the case of a finite concentration of
impurities, the electronic structure and the electron interaction in transition-metal alloys are studied. The
local-environment effect in the impurity magnetization first discussed by Jaccarino and Walker can be rea-
sonably explained by accounting for the local modification of the electronic structure of the host metal due
to the other surrounding impurities. In alloys such as Ni in Pd, where in the low-concentration limit the Ni
impurity does not have a localized moment and the alloy system is not ferromagnetic, we examine how, as we
increase the impurity concentration, the total ferromagnetism of the alloy is produced. If the interactions
among the impurities, between the impurities and the host metal, and among the host-metal electrons are
properly taken into account, the Friedel-Anderson-Wolff condition for the occurrence of the localized mag-
netic moment on an impurity exactly coincides with the condition for the onset of ferromagnetism of the
entire system. Various magnetic properties of transition-metal alloys are discussed, taking into account the
simultaneous modifications of electronic structure and electron interaction due to the presence of impurities.

I. INTRODUCTION

N spite of extensive efforts, we still do not have a

satisfactory understanding of some of the basic
properties of transition-metal alloys. The alloys
Pd;_oNi,;,7 Rh;_,Ni,* 1 and Cuy_,Ni,*13 for in-
stance, have a common interesting feature, namely,
when the concentration of Ni is lower than a certain
critical value «..it, the alloys are not ferromagnetic at
any temperature, and, for x> x..it, they become ferro-
magnetic at low temperatures. It is supposed that, for
x<%erit, N1 does not have a localized moment. The
concept of a critical concentration raises many questions:
Is the localized moment formed on N1 for x> %x..i even
above the Curie temperature? What is the mechanism
of ferromagnetism? Which electrons are the carrier of
ferromagnetism for x> .., those associated with the
impurities, the host-metal electrons, or both? How is the
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formation of a localized moment on the Nirelated to the
over-all ferromagnetism?

Some more detailed experimental analysis has been
made on other systems. From the Pd concentration de-
pendence of the Co®® NMR in the Rh; ,Pd. host,
Jaccarino and Walker!* suggested that the magnetiza-
tion of a Co impurity takes place discontinuously when
a Co impurity happens to have two or more Pd atoms
in the nearest-neighbor sites. Many alloy systems have
been found in which the magnetic behavior of an atom
seems to depend sensitively on the immediate local en-
vironment as well as the bulk properties of the host
metals. Those alloy systems include Fe or Co in
NbMo,!:1%2 Fe or Co in AL'¥!8 Ni in Cu,®® and V
in Au.19-2

The purpose of this paper is to understand problems
such as those mentioned in the above two paragraphs.
Let us consider the Pd;_.Ni. system, for example. When
the Ni concentration is below ~2 at.9, we observe
neither a “localized moment” on the Niatom nor ferro-
magnetism of the system. To explain this behavior, we
must first understand the problem of a single impurity
in a metal by determining what happens to the Ni im-
purity atom and the host-metal Pd. This single-impurity
problem was first formulated by Friedel?® and further
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developed by Anderson,?* Wolff,?® and others.?® In this
paper, we adopt the Anderson-model approach. In terms
of the Anderson model, the atomic level of Ni impurity
is broadened through the interaction with the conduc-
tion electrons (4d,5s) of the Pd metal to such an extent
that the Ni impurity can no longer maintain a localized
magnetic moment. The original theory of Friedel,
Anderson, and Wolff stops just at this stage of the
single-impurity problem, and thus, we cannot answer
what happens if we increase the Ni concentrations
gradually. Some of the many-impurity effects in the
Anderson model have already been discussed,?”3! but
these papers assumed localized moments were present
and considered the effective exchange interaction be-
tween the localized magnetic moments through an in-
direct mechanism via the conduction electrons?:2 or
a direct transfer between neighboring impurities.?%-3!
The purpose of this paper is different. Namely, we wish
to understand why whether an impurity has a localized
moment or not depends on the impurity concentration
or, more generally, on the immediate atomic environ-
ment around the impurity, and what is the relation
between the formation of localized moment and the
ferromagnetism of the alloy system.

Generally speaking, a metal is characterized by two
kinds of quantities: the electronic structure and the
electron interaction. To obtain the spin susceptibility
of a metal, we have to know both the density of states
at the Fermi surface (electronic structure) and the
effective exchange interaction (electron interaction).
The situation is the same in a description of the behavior
of alloys and there have been papers which consider
either aspect of the problem. For instance, electron
interaction in alloys was discussed based on various
models.?3273¢ Recently, the modification of host-metal
bands due to the presence of impurity potentials was
also discussed.?® In this paper, both aspects of the prob-
lem, the electronic structure and the electron interaction,
are treated on the same footing starting from Ander-
son’s model.

In Sec. IT, we extend Anderson’s original model to the
many-impurity case. Since for many of the alloy sys-
tems being considered the host metals also are transition
metals where the Coulomb interaction is very important,
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we also include the Coulomb interaction between host-
metal electrons. With these two extensions of Ander-
son’s model, in Sec. III, the Green’s functions of the
impurity and host metal electrons are calculated with
the Hartree-Fock approximation.

Using the result of Sec. ITI, one possible mechanism
of the local-environment effects for the magnetization
of an impurity is discussed in Sec. IV. The distortion
of the host-metal density of states due to the presence
of impurities is different for different impurity sites,
since each impurity has a different local environment.
Note that the width of an impurity state is determined
by the density of states of the host metal at the site of
the impurity. This fact can explain the local-environ-
ment effect. In obtaining this conclusion, we noticed
that, in some cases, even for a nearest-neighbor pair of
impurities, the indirect interaction via a host-metal
conduction electron can dominate the direct-transfer
interaction. Another possible mechanism of the local
environment effect which comes from the effective ex-
change interaction between impurities is discussed in
Sec. V.

In Sec. V, we start by assuming that in the single-
impurity limit the impurity does not have a localized
moment and the entire alloy is not ferromagnetic at any
temperature, i.e., Ni in Pd. We study how the onset of
the total ferromagnetism of the alloy and the occur-
rence of a localized moment on the impurity are pro-
duced as we increase the impurity concentration. The
criterion for the formation of a localized moment is the
divergence of the impurity susceptibility (the Friedel-
Anderson-Wolff criterion?3—25). The condition for the
ferromagnetism of the alloy is the divergence of the
total susceptibility. In calculating the magnetic sus-
ceptibilities of the localized states and the host metal by
the Hartree-Fock approximation, we find they are
coupled to each other. From the coupled equation for
the susceptibilities, we find that all three susceptibilities,
that of the individual impurities, the system of all the
impurities and the host-metal electrons, diverge to-
gether at the critical impurity concentration (or at
the Curie temperature). In a sense, the ferromagnetism
(or antiferromagnetism) of the entire alloy and the
formation of a localized moment on the impurity occur
at the same impurity concentration (or temperature).
The above observation, especially concerning the for-
mation of a localized moment on an impurity, should
always be understood in the sense of the Friedel-Ander-
son-Wolff criterion. As will be seen later, however, the
Friedel-Anderson-Wolff criterion may not be the
appropriate one in the case of many impurities.

In Sec. VI, we analyze some of the experimental data
on alloys like PANi, PdRh, and RhNi based on the
results of Sec. V. In the presence of this analysis, we
show that it is really important to consider both the
electronic structure and the electron interaction prop-
erly. For instance, the denominator for the alloy sus-
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ceptibility (which is the inverse of the exchange-
enhancement factor) contains terms quadratic in the
impurity concentration. One power comes from the
electron interaction and the other from the change of
the electronic structure (density of states). This qua-
dratic dependence in impurity concentration seems to be
essential in order to understand the experimental
situation.

II. MODEL

In this paper, we use Anderson’s model generalized
in the following two points: (1) We consider many
mutually interacting (Vo) impurities instead of a single
one. More generally, these impurities need not be of the
same species. Namely, we consider the case that there
are two or more different kinds of impurities. (2) We
include the Coulomb interaction between the conduc-
tion electrons of the host metal since as the host-metal
we are interested in such metal as Pd where the Cou-
lomb interaction is very important. With these two
modifications, the Hamiltonian is

3= 3Cr+3C 4 3Ca+3Caa+3C ca+3C,, (2.1)

where 3¢, and 3C, are, respectively, the one-particle
energy and the Coulomb repulsion-energy of the host-
metal conduction electrons:

3Ck=z EkaqTCk(f’ (22)
ko
3C0=%‘v ZI Ckvlrck’a’.rck’—q,v’ck+q,u- (2.3)

kR
g,0
Here the host-metal conduction band is represented by
a nondegenerate band, although, in a transition-metal
host, we actually refer to the orbitary degenerate 3d
or 4d electrons as conduction electrons. cx,' is the crea-
tion of the conduction electron with energy ¢ and spin
o(=-4 or —). The Coulomb interaction is simplified
by using a é-function interaction. The prime on the
summation in Eq. (2.3) means to exclude ¢=0 from the
summation. 3C; and JCsg are, respectively, the one-
particle energy and the Coulomb repulsion of electrons
at the impurity:
Ha=2 Eldisdss,

1,0

(2.4)

Haa=>Y, Uditdiyd; td;, (2.5)

where again we approximate the 7th impurity level by a
nondegenerate single-energy level E.® and the d;,' is the
creation operator of a ¢ spin electron at the sth im-
purity. Here the suffix ¢ on E,° means that E;° depends
on the species of the ¢th impurity. E,%s of the same kind
of impurities are equal. U; is the Coulomb repulsion
between electrons of opposite spins at the ith impurity
site and it also can depend on the species of the im-
purity. 3C.q is the interaction term between the con-
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duction electron and the impurity electron (s-d mixing):

Hea= 2, (VadsotcrotVi*eroldis) (2.6)
2,k,0
Vie=Vi(k) exp(ikR;), (2.7)

where R; is the ith impurity site. V;(k) is defined by
Anderson?* and it is k-dependent. In our calculation,
as in the case of many other authors, we will neglect
the & dependence of V;(k) and put V;(k)=V;, and for
simplicity we assume it to be real.

The last term in the Hamiltonian is the direct-
transfer integral between the impurities?:

3= Z T.;Jdiﬁdjq.

4,0

(2.8)

In general, T;; depends on the species of the 7th and the
jth impurities as well as the distance between them.
Notice that T; is real and 7';;=0.

III. CALCULATIONS OF GREEN’S FUNCTIONS

In order to calculate the physical properties of
localized and conduction electrons, we introduce the
two-time retarded Green’s function of two Fermion
operators a and b',36 whose Fourier transform is denoted
as (a|b"),. The prescription to calculate the thermo-
dynamical average (b'a) from the corresponding Green’s
function is given by

00

dw{(a|bt)srio*
—(a|bt)u—io*} flw),

where f(w) is the Fermi distribution function of the
system. The Green’s function is obtained by solving
its equation of motion

w(“! bT)“’: <[a7bT:]+>+ ([aﬂc] I bT)‘» ’ (3'2)

where [, ], and [, ] are the anticommutator and com-
mutator and w is always understood to be w-+:0*. In
the last term on the right-hand side of Eq. (3.2), 3¢
should be replaced by 3¢—u9t, where u is the chemical
potential and 97 is the operator of the total number of
electrons in the system. We can eliminate udt by mea-
suring every energy level form the chemical potential.

The necessary Green’s functions to be calculated are
of the type {(dis|dis")o and {(cis|ciss')o. In the pro-
cedure of calculating them, however, Green’s functions
of following type also appear: (dis|crs ) and
{cre|djs")e- We set up the equations of motion for
all these Green’s functions. The calculation is similar
to that we presented previously?’ except for the modifi-
cations mentioned in the previous sections: (1) the
inclusion of the Coulomb interaction between the con-
duction electrons of the host metal, (2) the presence of

1
(bta)y=——
21t J —

(3.1)

8 P. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [English
transl: Saviet Phys.—Usp. 3, 230 (1960)]..
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more than two different kinds of impurities, (3) the
inclusion of the direct transfer term between impurities,
and (4) the presence of an external magnetic field. The
effect of an external field is incorporated simply by
modifying e, and E;° to

€+ = Gk:I:,LLBH, EH:O: EiO:I:pBH 5 (33)

where H is the external magnetic field applied in the z
direction and up is the Bohr magneton (>0). We as-
sume the g factors of the impurity and host-metal elec-
trons are the same and equal to 2. The set of the
equations of motions are

(w —E,~+°) (di+ l d,-+T>w
=051V, Zk: eFRi{gry | c,-+T)w+Z T (djy | dig e
]I

+{{di,3aalldis e, (3.4)
(w—ep)err|dist)o= 2 VieE (it | digt)e
+<[Ck+75c0] I di+T>w ) (35)

(@—exi)err] crt)o=0kp+22 View*Edi [ crrit)e

+ ([Gk+,3(30] I 6k'+T>w } (36)
(0—E){dir|crrit)o
=V e*Bi{cry |opi Dot Tiildix | erite
% j

+{[di+,3aa]|crr i)

The equations for a spin-down electron Green’s func-
tion are obtained simply by changing spin indices from
=+ to 7 in the above set of equations.

In order to solve the above set of equations, we intro-
duce the Hartree-Fock approximation to the following
four Green’s functions appearing in the above set
of equa'tionS: ([di+7gcddjl dj+T>w) <[Ck+:3c c] I dH—T)w )
LCerr,3Ce]|eriNe, and  ([diy,3Caa]|crrit)e. First, we
notice the commutator

3.7)

[di,3Caa]=Uidinditdi, (3.8

LexpdCc]=v 22" cioleria,olh—at, 3.9)

l,q,o

where the prime on the summation in Eq. (3.9) indicates
to exclude ¢=0. The Hartree-Fock approximation for
{[diy,3Caa]|ds1 e is as follows:
([dir,3Caal|dsi )
=Uidipditdi-|diyT)a
ULt Ydir | dit)o— Uditdiy Xdiz| i)
UN; (dir|diyT)o, (3.10)

where N, ={(d;'d;.) is to be determined self-con-
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sistently. Similarly,

([di+,5Caa]| x4
= Uddsrditdi_|ciosthe
SULditdi ) dir | v Do—(ditdip ) {di | crrat)e
=UN: (dir|crat)o,

(Cers3Ce]lerrit)o

=0 2 {cwcria,othgn|crsTa
l,9,0

(3.11)

= 3 {etolrr,o)(Ci—a|CrsTho
l,q,0

—v 2 {ewlergaXcrrao|crat)e

l,q,0
=03 (a-ferprw ) ewr | crat)u(1—Brrr)
l

=0 2 {ergteig) s |crit)e, (3.12)
q

(Cors3C| st
=9 Z’

lg,o

g Z’

l,q,0

(crolerrq,oth—g,+] it 1w

(ClvTCHq,v> (Ctgt | dir N

- lZ' <ClvTCk—q,+><Cl+q,d ! dist)e
.40

=~ 3 (Chgot g ){0rs | i) (3.13)
q

With these approximations, Eqgs. (3.10)-(3.13), the set
of equations of motion, Egs. (3.4)-(3.7), is reduced to
(w=Eil’=UNz){dix|dizt)e

=08+ Vi X e*Ficps|djst)e

%
+§;; Tiildjs|dist), (3.4)
(w — fk;l:+vn:h) <Cki I djiww
=2 Vie *Fi(diy|djst)a, (3.5")
(0—erston){crs|crat)e
=0u+2 Vie * 5 i{dix|cprale
Fons(k—k ) (ews|owiN(l—8), (3.6")
(w—Eir®—U;Nig){diz | crr s
=V zk: e*Filcpy v Dot Tiddizlcwat)e,  (3.77)
7

where n.=3"x (crslcrs) and np(g)=3r (cralorrqr),
which must also be determined self-consistently. The
coupled equations, Egs. (3.4')-(3.7"), are solved:
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(dig|digt)u= (w —Ei '~ UNig =V op(w)— 2 [ViVFijelw)+Ti]

7(#9)

1

w—E; "= U;N 5~V ?F o1 (w)

Ok’ 1 1

(erelewao=
w—€prV0y

1
X (ck':lz ‘ ck’:{:T>w(1 - 5kk')—-———
w—€pptng A

where
ik Rii
Fijp(w)=2 —_—, —R;,
E w— Eki+7)ni+‘lo+ (316)
Foy(w)=2 =1.4"(w) —impo"(w) ,

E w— Eki+7)7’li+1:0+

Ici°(w)=§ P (3.17)

w—eki-f—vni

In Eq. (3.17), pc+%(w) is the density of states of the
conduction electrons of the pure host metal and 7,,%(w)
is the real part of Fo.(w). Note that in the paramagnetic
state when there is no external magnetic field we can
drop the spin indices == from the various quantities
introduced in this section. Therefore, throughout this
paper, we neglect the spin indices whenever we refer
to quantities at zero external magnetic field.

If the Coulomb interaction » and the direct transfer
between impurities T;; are set equal to zero, and the
difference in the species of impurities is neglected in
Egs. (3.14) and (3.15), one obtains the previous result
of Ref. 27. In the following sections, we discuss various
problems on the basis of our Green’s functions, Egs.
(3.14) and (3.15).

IV. LOCAL-ENVIRONMENT EFFECTS

Since Jaccarino and Walker’s interesting proposal,
that the magnetization of an impurity takes place dis-
continuously depending on the atomic configuration in
the immediate vicinity of the impurity, a number of
systems similar to theirs have been discussed.!*~2? For
instance, very recently in studying AuV alloys,'®*%! a
number of people suggested that a V atom has a localized
magnetic moment when it does not have V neighbors
within a critical distance, say nearest-neighbor site, and
the moment disappears if another V atom is on the
nearest-neighbor site. Although this is a situation
opposite to the case mentioned in the Introduction, the
nature of the problem is exactly the same, namely,

+Z ViVJ

-1
[VjViFjiﬂ:(w)+Tii]) , (3.14)

2 Ve i ROR(dy | diyt) ot ons (R —E')

w—€ppF vy w—eprypFong i

ewiklfi
(dig|dig)u ViV iF ij3(w)+Ts;]

W—€prT V4
1 e k' Rj

, (3.15)
w _._E].:ko_ Uijjq: - Vj2F()i((JJ) w— Gk/i'{—’l)n:k

whether an impurity has a localized moment depends
on the details in the immediate vicinity of the impurity.
Some qualitative discussions?’-28:37 were made previously
on this problem. We present a new simple explanation.
Namely, based on Anderson’s model, we consider how
the width of the localized state of the ith impurity A/°,
which appears in the criterion for the formation of a
local moment, is modified by the presence of the other
surrounding impurities.

In the presence of other impurities, the density of
states at the Fermi surface of the th impurity is modi-
fied from p,%(0) to p;(0). The situation that the single
impurity does not have a local moment, but obtains
a moment if the impurity has certain number of other
impurities in its neighbors, can be described by the
condition (see Sec. V)2¢: In case I,

U1p10(0)< 1 5 but Uipi(O) g 1. (41)

Therefore, our problem is to discuss whether the situa-
tion described by Eq. (4.1) is likely to occur in the alloy
system as studied by Jaccarino and others.!4=22 As will
be shown, the change in the impurity density of states
can be negative as well as positive. Thus, a situation
opposite to Eq. (4.1) is also possible: In case II,

U,p,O(O)g 1 , but U,pi(O) <l1.

The case of V in Au may belong to case II. Note in Eqs.
(4.1) and (4.2) that the impurity density of states is for
the spin-unsplit states.

If the center of the impurity state is very near the
Fermi level, Egs. (4.1) and (4.2) can be rewritten in
terms of the change in the width of the impurity states
from A° to A;= A+ 6A; [see Eq. (5.8)]. Corresponding
to Eq. (4.1), for example, we have case I':

U;/mAL<1, but U;/m(AL4-6A)>1. (4.1

The physical origin of the change of the impurity
state can be traced to the last term in the bracket on
the right-hand side of Eq. (3.14), which represents the

37 M. Inoue and T. Moriya, Progr. Theoret. Phys. (Kyoto) 38,
41 (1967).

(4.2)
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interaction energy of the 7th impurity with the sur-
rounding other impurities and does not appear in the
single-impurity limit

Zip(w)= .E,) LViViF ijp(w)+Tss]?
1

@—E 0= U;N sz —V #Fos(w)

(4.3)

In Eq. (4.3), we used the fact that F;;(w)=F;;(w) which
is valid if ez=e_x, as is clear from the definition Eq.
(3.16). The real and imaginary parts of 2; give the
energy shift and change in the width of the impurity
state. Our problem is to see how the impurity density
of states is modified from p,° to p; by the effect of Z,.

Note that the approximation that the impurity
density of states is a Lorentzian is a very crucial
simplification. Although many important results have
been obtained by using the fact that the impurity
density of states is not a simple Lorentzian,? 3! we
use the Lorentzian approximation which makes the
discussion for the change of an impurity state simple
and transparent. Another technical justification for our
procedure is that the w dependence of Z;(w) is not much
sharper than the w dependence of the single impurity
term V2F(w), since in transition metals it is likely that
the impurity-state width is not much smaller than the
host-metal bandwidth. This can be discussed in two
ways. First, as shown in the Appendix, we can carry
out the summation over 7 in Eq. (4.3). Although
F;j(w) is a rapidly oscillating function of w for large R;;,
after the summation over 7, the resultant w dependence
becomes essentially that of Fo(w) or the impurity Green’s

3A;=—ImZ:(w)
=06A;W—406A;®464;®
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function in the single-impurity limit [see Eq. (A4)].
Second, as follows in this section, we may retain only
certain contributions in the summation over j, for
instance, from nearest-neighbor impurities. The con-
tribution from distant j’s are small and likely to
cancel each other. Within this approximation, the re-
sulting » dependence of Z;(w) is again not sharp. Note,
however, that we are not advocating neglecting the w
dependence in Z;(w). What we have tried to illustrate
is that the full inclusion of the w dependence in Z;(w)
is about as important as the w dependence of the single-
impurity term V2Fo(w) and not much more.

Even within this approximation of a Lorentzian
density of states, however, a fully self-consistent quan-
titative discussion for the general case is very difficult. If
we change the width from A to A,°48A; with fixed
E; (by E; we imply the actual impurity energy level
modified from E;° by various effects), the number of
electrons in the localized impurity state would change
and this change complicates the problem. Since, for the
moment, we are interested in the qualitative aspect of
the problem, we assume that E; is just as the chemical
potential. In the following part of this section, the dis-
cussion will be focused exclusively on obtaining Egs.
(4.1") and (4.2") which would be clear from Eq. (4.2).
Then our task is simply to estimate the change in the
width of the ¢th impurity state which is the imaginary
part of Z;(w) (as to the effect of the real part of Z;
we discuss in Sec. V).

As seen from Eq. (4.3), the change in the width
consists of three different contributions corresponding
to the three different components in the interaction
energy Z;(w):

5A,‘(1) = — Vi2 Im( Z Vj2

J(F4)

5Ai(2) = — Z T_;],2 Im

J(#0)

SAB=—2 ViVjTijIm<Fii(w>

7(#0)

In the above equations, we put H=0 and, therefore,
N =N, =N, etc. Note that the expressions for the
change in the width are w-dependent, however, as in
the calculation of A, we replace w by the chemical
potential of the system, which we take as the zero in
measuring the energy.

The simplest term to understand physically is 64;®,
which is due to the direct transfer interaction between

(4.4)
: @) (+5)
Fijf(w)? ], .
w—Ejo—' Ujl 7]'— ijF()(w) ’
1
( ), (*.6)
w_EjO— UjLVj— Vj2F0(O))
1
). @7
w—E—=U;N;—VFo(w)

impurities. Naturally, 6A;® is always positive and, for
the simplifying condition that E;=0, it is given by

1
5A,;(2) = 2 Tijz‘—.
79 AL

4.6")

If we assume that T';;=T for nearest-neighbor pair of ¢
and 7, and zero otherwise, and that A;= A° indepen-
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dent of 7, then we obtain
6A1;(2)/A0= Zi(T/AO)2 5 (46”)

where z; is the number of other impurities on the
nearest-neighbor sites of the sth impurity.

8A;M comes from the indirect interimpurity inter-
action through the host-metal conduction electrons.
By referring to Eq. (3.15), we see 8A; V=7V ;2X[the
change of density of states of the host-metal conduction
electrons of the Fermi surface at the ith impurity site
due to the presence of other surrounding impurities].
Since the change in the host-metal density of states
can be either positive or negative, §A;( can be either
positive or negative. The possibility of 6A; becoming
negative differentiates the behavior of §A;( from 8A,;®.
In the following, we examine §A;(V in more detail. The
calculation of the function which appears in Eq. (4.5)

ek

Fr(w)=2

—_— 4.8
v w—ep+170T (4.8)

for a real energy band, is, in general, a very complicated
task as was discussed by Koster.*® However, for a para-
bolic band it is easily calculated as
@ Q 2m 1 [<2m( ) 1/2R:| 48
Fr(w)=———cexp| t| —(w—e, R 8
BT e O\ e >

where @ is the volume of the system and ¢, is the bottom
of the conduction-electron band. With ‘this simplification
Eq. (4.5) reduces to

(Q 2/ 2m\2
bA =72 —> (-)
4 h?

A

Xj(z;é:w Vj2<(w"‘E]’)2+AjO2
cos{2[(2m/h*)(w—ec) ]'/°Ri;} (w—E;)
% Ri? - (0—E;)*+A;%
% sin{2[ (2m/%*)(w—e.) 'Ry}
Rif

) 69

In Eq. (4.9), as we did for A% we equate w to the Fermi
energy. With this approximation and our assumption
that E;~20, Eq. (4.9) simplifies to

Q >2< 2'm>2 Vi COS(ZkFRij)
7G4)

5A,~<1>§Vﬁ(— — , (4.10)
hz A]0R1]2

47

where k7 is the effective Fermi wave number of the
conduction-electron band. Further, if we notice A,
=7V;2.(0), where p.(0)= (mkr/272h2)Q is the un-
perturbed density of states of the host metal [see Eq.

38 G. F. Koster, Phys. Rev. 95, 1436 (1954).
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(3.17)], Eq. (4.10) is reduced further:
5Ai(1) 1 COS(ZkFRij)
R

= (4.11)
AP kp? iG0)

The oscillatory behavior of 6A;™ has the same origin
as that of the well-known Ruderman-Kittel oscilla-
tion.?”+? Note in our approximation that the difference
in the species of impurities does not show up in the final
result, Eq. (4.11). As is seen from Eq. (4.10) or (4.11),
the effect of the surrounding impurity is most important
when it is at a nearest-neighbor site. If we consider only
the effect of the nearest-neighbor site impurity, as-
suming a simple cubic lattice, Eq. (4.11) reduces to

5Ai(l)/Ai0= 42, COS(Zde)/(Zde)2 5 (411’)

where d is the interatomic distance. Note that cos(2k rd)
varies from —1 to 1 depending upon the value of 2% pd.
We immediately see that it is quite reasonable that
8A;M/A° can be on the order of 0.1 by having a single
other impurity in its nearest-neighbor site.

8A;® can be discussed in a manner quite similar to
the case of 6A;(V; and the magnitude of this cross term
is generally in between §A;V and §A;®.

It is not a simple problem to determine which change
in the impurity-state width §A;® or 8A;® is more
important, although it has been rather customary to
assume that for a nearest-neighbor pair of impurities
the direct-transfer term, which gives rise to §A;®,
dominates. We know, for instance, in rare-earth metals,
the indirect interaction via the conduction electrons
dominates the direct interaction between a nearest-
neighbor pair of localized 4 f states. Let us try to get a
crude estimate of the relative magnitudes of §A;™
and §A;®. From Egs. (4.6"") and (4.11"),

[6A;D|/6A:,P=[4/(2kpd)2](AL/T)?. (4.12)

In the tight-binding approximation, the bandwidth is
given by 2T times the number of the nearest-neighbor
sites. T for the simple cubic lattice is roughly estimated
to be T'~3W;, where W; is the bandwidth of the d
electrons if the impurities we are considering are
transition-metal elements. On the other hand, the host-
metal density of states can be expressed in terms of the
host-metal bandwidth W, as ~N/W, thus, A
>rV2N/W,.. Putting these estimates into Eq. (4.12)
and replacing 2k rd by m, Eq. (4.12) reduces to

|8A;D| /6A,D=AX8(VEN/W W), (4.12)

In Eq. (4.12"), W, =~the 3d bandwidth=4=6 ¢V. If the
host metal is also a transition metal, as in the cases of
Jaccarino and Walker,’* we may assume W =W,
2~5 eV. The last quantity we need to estimate is V+/N.
Note that in our normalization?* V+/N is the quantity
on the order of the one-particle energy and generally it
is assumed to vary between 1 and 2 eV. The magnitude
of the Eq. (4.12) can be either bigger or less than 1,
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depending upon the value for V+/N:
|64,
PN

12 2
=4><82( ) =0.41, for Vo/N=1eV

5

22 2
=4X82(3—2> 6.6, for VA/N=2¢V. (4.12")
From the above discussion, it seems quite reasonable
to assume the possibility of either case A, |8A;D|
00,9, or B, |8A;V|<|8A;@]|. In both cases, 64,
may be neglected compared with the dominant term.

Case A is most interesting, since in this limit
0A;=28A;V can be negative as well as positive. There-
fore, we have the possibility of explaining case I, Eq.
(4.1), or case I', Eq. (4.1), of the local-environment
effect, as well as case II. In case B, §A=26A;® is
always positive and only case II, Eq. (4.2), of the local-
environment effect, is possible.

In the following, we discuss the historical experiment 4
of Co in Rhy ,Pd, assuming case A. According to
Jaccarino and Walker,'**5 Co does not have a localized
moment when all the nearest-neighbor sites of Co are
occuppied by the Rh host-metal atom. We can assume,
for instance,

U co/TAco?220.9. (4.13)

Since Co has a moment when two or more of its nearest-

neighbor sites are occupied by a Pd impurity, the follow-

ing inequality should be satisfied, with z;=2:
UCO/T(ACOO+ 5ACo> =1. (414)

Using Eqs. (4.13) and (4.11"), our condition Eq. (4.14)
reduces to

cos2k pd 1 cos2k pd

8 <— <4 .
Qkpd)? ~ 10" (2kgd)?

(4.14")

The values of krd necessary to satisfy Eq. (4.14') are
1.60<2kpd<1.64, or, 4.25<2kpd<4.46. Typically,
krd is on the order of =. Although our estimate is quite
crude, the values required for % zd are not unreasonable.

In the above case, 6A was negative, but in the case
of Vin Au, for instance, a positive §A would be required.
Obviously, the case of V in Au can be understood in the
same way as above.

Finally, we should mention that there is still another
possible mechanism of a local-enviromnent effect which
may be equally important. In short, the discussion in
this section is based on the local-environment depen-
dence of the imaginary part of the interaction energy
Zi(w), Eq. (4.3). The real part of the interaction energy
also depends upon the local environment and should be
included in the treatment of the problem, as will be
shown fully in Sec. V. Although in this paper we do not
discuss the second mechanism of the local-environment
effect in any detail, its basic effects are included in the
formulation given in Sec. V.
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V. FERROMAGNETISM AND LOCAL MOMENT

In this section, we discuss the nature of the ferro-
magnetism in alloys like PANi. Below a critical impurity
concentration, these alloys are not ferromagnetic at any
temperature and the impurity does not have a localized
moment. Therefore, we start by assuming that, in the
single-impurity limit, the impurity does not have a
localized moment. We discuss how the ferromagnetism
of an alloy is produced as we increase the impurity
concentration. We are also interested in the possible
relation between the onset of the ferromagnetism of the
alloy and the formation of a localized moment on the
impurity.

In Sec. IV, we followed the traditional approach in
discussing the formation of a localized magnetic moment
by considering the divergence of the magnetic suscepti-
bility of the impurity. Similarly, the ferromagnetism of
the total system is understood to occur when the total
magnetic susceptibility calculated for the paramagnetic
state diverges. In this section, we calculate the mag-
netic susceptibilities of both the impurity and the host
metal electrons, including the effect of interactions be-
tween the impurity and the host, among the impurities,
and among the host-metal electrons. In the discussion
of the local-environment effect in Sec. IV, we used a
magnetic susceptibility for the impurity which included
some effects of the interaction with the other impurities
but did not include all the interaction effects completely.
In Sec. IV, we included only that part of the interaction
effect which is responsible for the change in the im-
purity density of states. If we include all of these inter-
actions mentioned above, the magnetic susceptibilities
of the host-metal electrons and the impurity are not
independent of each other and we have to solve a set of
coupled equations for the impurity susceptibility and
the host-metal susceptibility. First, we start from the
impurity susceptibility and see how it couples to the
host-metal susceptibility, and then we repeat the same
for the host-conduction-electron susceptibility.

If we apply a magnetic field H in the direction of the
z axis, the impurity state and the host-metal conduction
band are magnetized. Namely, the occupation number
of the ith impurity state NV, and that of the host metal
7., which were introduced in Sec. III, are different for

different spins:
ZV@'iE ]Vi:F AN,, N (5 1)

ni=nFAn. (5.2)

The magnetic susceptibilities for the impurity X; and

the host metal X, are defined as
Xi=pp(Ni-—Nu)/H=2upAN;/H , (5.3)

Xe=pupg(m_—n,)/H=2ugAn/H , (5.4)

where we assumed the g factors of the impurity state
and the host metal are the same and equal to 2. Our
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problem is to calculate V,;. and #.. by using the Green’s
functions obtained in Sec. III.

A. Impurity Susceptibility

Let us first calculate the impurity susceptibility.
AN; in Eq. (5.3) is calculated from the prescription in
Eq. (3.1) using Eq. (3.14),

N —ZVH_ =2AN;

1 )
=—- / flw)dw Im({di_| di_t)wpio*
T™J—
—{dig|diropio*)

2 00
== / f(w)dw Im(<di+|di+T>w+io+
T J—n
- <di+ l dirNwtio* i H=0)-

The last equation in Eq. (5.5) is valid in the linear ap-
proximation with respect to the external magnetic field
H.

If we maintain the approximation of a Lorentzian
density of states for the impurity state, in general, the
external field does two things: (1) It spin splits the
impurity state, and (2) it changes the width of the im-
purity state. Fortunately, in the calculation of the
linear magnetic susceptibility, the second effect, the
magnetic field dependen ce of the width of the impurity
state, does not enter at all. Therefore, for the calcula-
tion of the susceptibility, Eq. (3.14) can be rewritten as

(dir]dis")o=[w—Ei = UiN =V ()
8 Fi(w) AT, (5.6)

where A;= A%+ 08A; as was defined in Sec. IV (note that
it is independent of the spin). §F;; is the real part of
the impurity-impurity interaction energy 2., (iw):

BEH:——- Re[Eii(w)]. (5.7)

0A; is given by Eq. (4.4). The functions 7,.%(w), Foy(w)
are defined in Sec. III by Egs. (3.17) and (3.16).

The Lorentzian approximation to the impurity state
implies reducing Eq. (5.6) to

(5.5)

(dix]dis")o=[(0—Eir)+iA], (5.8)
where E;y as well as A; is w-independent and

with AE;<H. If the impurity Green’s function is of
the form of Eq. (5.8), the calculation of the linear
magnetization Eq. (5.5) becomes straightforward. From
Eq. (5.8), the impurity density of states p;(w) is given as

pir(w)=—(1/m) Im<dii‘di:tT>w+io+
=(1/m{A/[(w—Ewx)*+A%]}.  (5.8)

Note that, in Sec. IV, we had already assumed this
form for the impurity density of states, With Eq. (5.8'),
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Eq. (5.5) is rewritten as

AN;=— / S(w)dw[pir(w) | z—pir(w) | m=0]

* 0
= / f(w)dwavpi(w) AE;, (5.10)

where p;(w) is given by Eq. (5.8") with E;, replaced by
E;. At zero temperature, to which the discussion in this
section is confined, Eq. (5.10) reduces to

AN ;= p;(0)AE;. (5.11)

We must know p;(0), the impurity density states at the
Fermi surface, and AE;, the shift of the center of im-
purity state due to the external magnetic field. p;(0)
was discussed in Sec. IV, and there we showed how the
difference in the local environment changes p;(0).
Therefore, the remaining problem is to obtain an explicit
expression for AE,.

The approximation of Eq. (5.6) by Eq. (5.8) may be
realized by setting E; and AE, equal to

Ei=E+UN 4V 2,20)+5EA0),
AEz =a,~uBH—f— UzAZVri-dﬂ)An—i- Z Cij UjALVj .

7(#1)

(5.12)
(5.13)

The shift of impurity energy due to an external field
consists of many terms as is given in Eq. (5.13). First,
the main contribution to a; of the Zeeman-shift term
comes from the simple Zeeman shift of the impurity
level. The external magnetic field Zeeman shifts the
conduction electrons and a dominant part of this effect
comes through the shift of the third term on the right-
hand side of Eq. (5.12). Note that on the right-hand side
of Eq. (5.12) 8E;/V2I.2(0)=0(No/NA/er) and, there-
fore, the Zeeman shift of the fourth term is of higher
order than the third, especially for small impurity con-
centrations. Retaining only these two dominant shifts
due to the Zeeman splitting,

a;=1-V21.2(0), (5.14)

where the prime means the differentiation with respect
to w. The second term on the right-hand side of Eq.
(5.13) is the exchange shift due to the molecular field
of the intra-impurity Coulomb repulsion. This term
was discussed in the original work of Anderson.2* The
third term on the right-hand side of Eq. (5.13) is the
exchange shift due to the molecular field of the con-
duction electron magnetization. The dominant con-
tribution to a@; comes from the exchange shift of the
third term on the right-hand side of Eq. (5.12):

a;= __ViZICO/(O) . (515)

The exchange shift of the fourth term in Eq. (5.12) also
has a component which contributes to a;, but we
neglect it since it is of higher order than the term we
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retained in Eq. (5.15). The last term in Eq. (5.13) is the
exchange shift due to the molecular field from the other
surrounding impurities and, from Eq. (5.7), the coupling
constant ¢;; is given as

Cij= —Re([ViVjF i#0)+ T ]

) ) (5.16)

Upon substituting Eq. (5.13) into Eq. (5.11), we
obtain

[1 - U@pz(O)]AL\Tf; =pi(0) ((xing'-l—di‘Z)An
4+ > ¢ UAN;).

7))

1 ’
| )
w—EP—U;N;—V 2Fo(0)

(5.17)

Now we clearly see the magnetization of the ith im-
purity is coupled to the magnetization of the host-metal
conduction electrons (An) and the surrounding im-
purities (AN, 75%1). Since ¢;;=0 and v=0, this coupling
isnot present in the single-impurity limit treatment with
noninteracting host-metal electrons. We briefly discuss
the coupling constants a; and ¢;; appearing in Eq. (5.16).

The interaction between the impurity and the host
metal is either ferromagnetic or antiferromagnetic,
depending upon whether the sign of a;, Eq. (5.15), is
either positive or negative. Fortunately, the quantity
a; can be rather easily estimated. In Fig. 1, we sketch
a typical behavior of 7,%(w) for a parabolic conduction-
electron density of states p%(w). [ Notice that a similar
behavior is observed for a Lorentzian density of states
(see Fig. 2).] From this Fig. 1, we see that a;
[ —1.2(0)]>0 (ferromagnetic) when the host-metal
conduction band is nearly empty or nearly filled and
@;<0 otherwise. The magnitude of a; is on the order of
Ao/er. In Pd, for example, where we are referring to
4d electrons as the host-metal electrons, the band is
almost filled, and a; is likely to be positive. For actual
transition metals, the band structure is not as simple

10 +
P (w)
P
0
P
Ig(w)
2 (o]
-1.0 | ke
L |
-1.0 (0] 1.0

2(w-Wg/2)/ W

F1G. 1. The behavior of 7,?(w) for a parabolic density of states for
the conduction electrons p(w) =p {1 —[ (w—3wc) /3w, ).
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fff%/////

Ié’ (w)Aq

0.5

-05 1 1
-2.0 -10 0 1.0 20
(w-Egl/A,

F16. 2. The behavior of 1°(w) for a Lorentzian density of states
of an impurity pd®(w)= (1/7){Ao/[(w— Ea)*+As]}. Note that
the relation between p4®(w) and 74%(w) shown here can be regarded
as a relation between p(w) and I?(w) for a Lorentzian density
of states for the conduction electrons.

as shown in Fig. 1, and accordingly, a quantitative
estimate of a; is not simple.

The interimpurity coupling constant ¢;; consists of
three different components:

cij=cij V405504, (5.18)
ci; (V= —Re[ V2V F4(0)
1 ’
><( ) } (5.19)
w—ES—U;N;—V2F(0)/ | om0
1 !
i ¥ =—T; Reli( > ]
w—EL—U;N;— Vj2F0(O) =0
= —T17(0), (5.20)
ci;®==2V.V;Tsy
!
XRe|:Fij(0)< ) ]
w-—-E]'O— UjZVj_' ijFO(O) =0
(5.21)

The decomposition of c¢;;, Eq. (15.18), exactly corre-
sponds to the previous decomposition of §A;, Eq. (4.4).
In Eq. (5.20), 1,°(w) is introduced as the real part of the
jth impurity Green’s function in the single-impurity
limit. [Previously, in Sec. IV, we introduced the cor-
responding imaginary part, —mp;*(w). ] Let us briefly dis-
cuss these three components of c;;.

The term c¢;® originates from the direct transfer
between impurities and is the simplest to understand,
as was the corresponding term 6A;® in Sec. IV. We
consider a nearest-neighbor pair of identical impurities,
for which

6,']'(2)2 —TZIJ'O,(O) = —T2Ii0,(0) . (522)

In Fig. 2, we show the general characteristic of 7,%(w)
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corresponding to a Lorentzian density of states for the
impurity p;°(w). From Eq. (5.22) and Fig. 2, we can
immediately draw the following conclusions for a
nearest-neighbor pair of localized impurity states:
(1) When the localized (impurity) state is nearly half
filled ¢;;® is negative and, therefore, the interaction is
antiferromagnetic. (2) When the localized state is
nearly filled or almost empty, ¢;;® is positive and,
therefore, the interaction is ferromagnetic. These con-
clusions can be extended to the more general case where
the pair of nearest-neighbor localized states are of
different species. It is interesting to note that the two
conclusions above though obtained from a very simple
treatment are essentially the same as the conclusion of
Moriya.%

The term c¢;V results from the indirect coupling
of the impurities through the conduction electrons. As
in Sec. IV, if we assume Eq. (4.8"), which is valid for a
parabolic conduction band, ¢;® is explicitly given by

Q\2/2m\? 1
Cz'i‘”=Vi2Vf2(—> (_> R;?
4w/ \ %/ R;?

X{cos(2krR:;)[1;°(0)2—m%;°(0)%]
—"Sll’l(Zk F-Rij) ZTIjO(O)ij(O)} . (523)

If we assume that the sth and jth impurities are of the
same kind and the impurity states are nearly half filled,
E;= E;/~0, and Eq. (5.23) simplifies to

Cij(l) =—4 COS(2kFR,'j)/(2kFR¢j)2. (5.23’)

To obtain the relative importance of ¢;;" versus ¢;;®
from Eq. (5.22) and (5.23’), the same discussion as pre-
sented for 6A™M versus §A® holds.

The term ¢;;® is a result of the cross effect of the
two processes discussed in the above and, therefore,
its magnitude is generally intermediate between ¢;®
and ¢;?.

B. Host-Metal Susceptibility

We proceed to calculate the magnetization of the
conduction electrons:

(%_-—n+) =2An
1 0
=-" Im/ f(w)dw(zk: (Ck—|CkAT>w+io+
_§ (CrtleerDoriot), (5.24)

where, from Eq. (3.15),
2 (erelerat)o=For(w) —Foi'(w) X ViXdix|dist)o
k 7

—g' ViV ViViFij(w)+ Ty F iy (0){dic | dizt)e
177
1

w—E0—U;Njz—V 2Fox(w)

(5.25)
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In carrying out the program Eq. (5.24), we neglect the
third term on the right-hand side of Eq. (5.25) for the
following reasons. First, the third term represents the
perturbation of the conduction electron which is qua-
draticin the impurity concentration, whereas the second
term which is retained is linear in the impurity concen-
tration. Therefore, this simplification is justifiable par-
ticularly for the low-impurity-concentration region.
Second, in calculating the magnetization, we obtain all
of the physically interesting terms which are propor-
tional to H, An, and AN ; from the first two terms on the
right-hand side of Eq. (5.25). Therefore, the inclusion
of the third term is only of quantitative importance.
By expanding the integrands in Eq. (5.24) in terms of
H, An, and AN;, we obtain

An=psper(0) H+1p.s(0)An
+ 1; ZowpaO)UAN:, (526)
pe1(0)=p."(0) —Zil V(o M) +({Lipe™)))
—E V1=V 0)]

X (I Y0+ Up 1)),
pea(0) =p(0) =L VA((psl )+ ((Tip.)

(5.27)

+2 VAL O) (T N+ 1)), (5.28)

A/ N)bipa(0)=VA((Tp )+ 1)), (5.29)

where I,%(w) and p,%(w) are defined in Eq. (3.17), I;(w) is
the real part of the sth impurity Green’s function Eq.
(5.8), pi(w) is defined in Eq. (5.8"), with H=0, and the
notation ({- - -)) means

)= f f@)gw)de (5.30)

E/:: 2(w)dw.

In Eq. (5.30), f(w)is the Fermi distribution function
and in this section we always adopt the zero-temper-
ature limit Eq. (5.30").

Notice that both p.1(0) and p.2(0) are slightly differ-
ent from the real perturbed density of states of the host
metal p.(0), which is obtained by simply taking the
imaginary part of the Eq. (5.25) at H=0. In the same
approximation as Egs. (5.27) and (5.28), p.(0) is given as

pe0)=p50)~[p.7(0) T VAL(0)+12(0) = Vi3pi(0)].

(5.30")

Pey Pe1, and p2 become equal in the case of simple po-
tential scattering where the quantity corresponding to
{dix|dirTye in Eq. (5.25) or (3.15) is a constant inde-
pendent of w,
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C. Coupled Equations of X; and X,

Equations (5.17) and (5.26) represent a set of coupled
equations for AN; and An. We rewrite these equations
for AN; and Az in terms of the impurity- and host-
metal susceptibilities [see Egs. (5.3) and (5.4)7:

X,-=aixi°+aivxioxc+xi° Z CijUij, (531)
(0
1
X=X+ —X,° Z bJ'UJ'Xfy (532)
N i
where we have temporarily set 2up?=1, and
X0=p,(0)/[1=Uip:i(0)], (5.33)
XGOEPcl(O)/[1~7’Pc2(O)]- (5.34)

We assume X,;%’s and X,° are not diverging (and positive).

From these coupled equations, Egs. (5.31) and (5.32),
we can make the general observation that all the three
magnetic susceptibilities X;, 3 X;, and X., diverge at the
same time, i.e., the condition for the occurrence of a
localized magnetic moment on an impurity is identical
with that for the ferromagnetism of the impurity system
and the ferromagnetism of the host-metal conduction
electrons. Usually, local-moment formation is associated
with the divergence of X;, without divergence in X,.
This situation is impossible if the interactions between
the impurity and the host, among the impurities, and
among the host electrons are properly taken into
account.

From Eq. (5.31), it is easy to see that X; is pro-
portional to X,°. This fact justifies our discussion on the
local-environment effects in Sec. IV which was based
on X;° and not on the real impurity susceptibility X;.
For the magnetized state, the impurities do not behave
identically. Those impurities, for which X,° are dis-
continuously larger than other impurities, will have a
larger net magnetic moment in the magnetized state.

From Eq. (5.31), however, we note that there is still
another source of the local-environment effect besides
the first one which is included in X,°. Namely, the con-
tribution of the last term on the right-hand side of Eq.
(5.31) depends upon the distribution of the surrounding
impurities. As is well known, if we use the simple
molecular field approximation in solving Egs. (5.31) and
(5.32), however, this second kind of local-environment
effect will not be retained. In this paper, we do not
try to consider this second mechanism of the local-
environment effect, although it may be as important
as the local-environment effect contained in X,°.

If the Coulomb interaction between the host-metal
electrons v is sufficiently strong (say, ¥X,2>1) as in the
metal Pd, the long-range interimpurity interaction
through the second term on the right-hand side of
Eq. (5.31) will be dominant over the last term on the
right-hand side of Eq. (5.31). Since in this paper we
are particularly interested in Pd alloys, we solve the
coupled equations, Egs. (5.31) and (5.32), only for
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this limiting case by neglecting the last term on the
right-hand side of Eq. (5.31). For this case (i.e.,
¢;;=0), the coupled equations are easily solved:

1
X;= Xi°—<ai+dﬂ)xc°+vxc°
CD

4 1
X v 2 (ejai—aia;)b;U. ijO) , (5.35)
NG

1 1
Xe =X00———(1+ _ Z OljbjUij0> ) (536)

CD N i

where the common denominator (CD) of the suscepti-
bilities is

1
CD=1— - S abi X )UXD).  (5.37)
N 7

If there is only one kind of impurity, we can drop the
suffix 7 from U;, oy, and ¢; and neglect the weak 7 de-
pendence of b;. Then, Eqgs. (5.35), (5.36), and (5.37)
reduce to

X;=X%(1/CD)(a4a1X,%) , (5.35")

1 1
Xc=x00—~(1—|— —Uaby. x]-O), (5.36")
cD\ N 5

1
CD=1—abvx,'U—3_ X,°. (5.37)
N

From those explicit solutions, we reconfirm our pre-
vious observation. First, X;, > ;X;, and X, diverge to-
gether if and only if the common denominator Eq.
(5.37) or (5.37") vanishes. Second, X; is proportional to
X;® and, therefore, the local enivronment effect is in-
cluded through X,°.

As we have previously stated, the explicit solution
has been obtained only for the case in which the Cou-
lomb interaction between the host-metal electrons is
strong and, accordingly, the interimpurity interaction
arising from the second term dominates the third term
on the right-hand side of Eq. (5.31). The general struc-
ture of our solution Egs. (5.35) or (5.36) with a common
denominator, however, is expected to be valid beyond
this restriction.

Now the condition for the ferromagnetism of the

total system is given by
CD=0. (5.38)

Since X,° and X;° are positive, the necessary (but not
sufficient) condition for the realization of the condition
in Eq. (5.38) is, for the simple case of Eq. (5.37'),

(5.39)

If the condition Eq. (5.39) is satisfied, we can realize
Eq. (5.38) by either increasing the impurity concentra-

ab>0.
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tion or lowering the temperature to increase X,° (or X,0).
If, however, Eq. (5.39) is not satisfied and

ab<o0, (5.40)

the condition”Eq. (5.38) can never be satisfied and the
alloy cannot become ferromagnetic. Therefore, in our
theory, the signs of the quantities ¢ and b are of crucial
importance. The nature of the quantity e is rather
simple as is seen from Eq. (5.15). The quantity b, de-
fined in Eq. (5.29), is more complicated. Although in a
later publication we plan to estimate this quantity
numerically for a simplified model, here we only mention
that &, as well as @, can be either positive or negative
and its magnitude is O(1). A very crude estimation of
the sign of & can be obtained using Figs. 1 and 2.

It should be noted that in the whole discussion of this
section we have implicitly assumed that all the X,%’s
are finite. Due to the local environment effects, as
discussed in Sec. IV, in certain cases some of the X,%’s
may diverge even if in the single-impurity limit the
impurity does not have a localized moment. For such a
situation, the discussion in this section might have to be
modified. For instance, for an alloy in which some of the
X¥’s are diverging, a more appropriate treatment might
be one which assumes the presence of a localized moment
on those impurities from the start.?"—3!

I In Sec. VI, we present a few examples, by analyzing
the experimental data in terms of the result obtained
in this section.

VI. ILLUSTRATIVE EXAMPLES

In this section, we discuss a few ferromagnetic tran-
sition metal alloys, such as PANi and PdRh, based on
the results obtained in the previous sections for the
alloys in which the host metals are strongly exchange
enhanced. In order to make the discussion simple, we
ignore the fact that each impurity has a different local
environment, set

X0=Xg0 (6.1)

and assume it is positive and finite. The common de-
nominator of the susceptibilities, Eq. (5.37’), can then
be written as

for all 7,

CD=1—xab(vX.2)(UX4°),

where x=N,/N is the impurity concentration. Further,
although it is not esssential, we approximate a=1
— V2. by 1. Then, from Egs. (5.35’) and (5.3¢"),

6.2)

1
3 X =N X '—(1+aX,?) (6.3)
i CD

1
Xo=X,"—(1+2UbXS). (6.4)
CD

As briefly mentioned at the end of Sec. V, the crucial
problem is to estimate the two quantities a and b which
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are defined, respectively, in Egs. (5.15) and (5.29).
Generally, there may be four cases: (1) a>0, >0
(ferromagnetic); (2) a<0, 5<0 (antiferromagnetic);
(3) >0, 5<0 (nonmagnetic); (4) <0, 5>0 (non-
magnetic). As is seen from Egs. (5.13) and (5.26) in
case 1, the interaction between the host-metal con-
duction electrons and the impurity electrons are ferro-
magnetic, namely, they tend to magnetize in a parallel
manner.

In case 2, if |@|vX.,°>1, which is quite possible, then
Xg is negative. As for X, as long as xU|b|X0<1, it is
positive. In this situation, the condution electrons mag-
netize in the direction of the external field, whereas the
impurity spins magnetize in the direction opposite to
the external field. As we increase the impurity concen-
tration «, the numerator of X,, which is positive for
small x, as well as the CD, decreases. If |a|vX,2>1
as we have assumed, the CD vanishes before the
numerator of X, changes sign and in this case the critical
impurity concentration .. for antiferromagnetism is
obtained from CD=0. If |a|vX,9<1 in case 2, then
X4>0 and X,>0 for small x. However, as we increase x,
the numerator of X, changes sign before the CD
vanishes, and, therefore, from CD =0 we obtain again a
critical impurity concentration for the occurrence of
antiferromagnetism. [Note, however, that for small
9X9 (< 1), our approximation of neglecting the last term
in Eq. (5.31) is not valid.]

In cases 3 and 4, since the common denominator is
always bigger than 1, X, and >_; X, never diverge and,
therefore, no ferromagnetic or antiferromagnetic phase
transition is expected.

We are most interested in case 1, since we wish to
explain the behavior of the alloys such as PANi, PdRh,
and RhNi, which seem to belong to this case. In the
following, we will concentrate on case 1. For these alloys,
the magnetic susceptibility which is the sum of > ;X;
and X, Egs. (6.3) and (6.4), can be approximated as

A,*Oxdo_{_xaﬂ

1—xab (X (UXs0)

(6.5)

Xalloy = Z Xi+xc§
7

As is easily seen, the role of the correction term in the
numerator, which should be present on the right-hand
side of Eq. (6.5), can be neglected compared with the
role of the CD Note Eq. (6.5) is very similar to the
result obtained for the s-d exchange model in which
X4 is a Curie susceptibility.?? To analyze the experi-
mental data, we introduce two quantities from Eq. (6.5),
the initial-increase rate of Xai0y with the impurity con-
centration 6, and the critical impurity concentration
for ferromagnetism .., which is obtained from the
equation CD =0;

1 dxalloy ijdo
=———|  =ab(eX0)(UXS)+ ——, (6.6)
XS dx .0 X,
woria(T) =[ab(@X.%) (UXa") T ©.7)
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Note if the first term dominates the second term on the
right-hand side of Eq. (6.6), %t is just the reciprocal
of the initial increasing rate of X,i1y, and in this limit
Egs. (6.6) and (6.7) are very similar to the result of
Engelsberg, Brinkman, and Doniach?* based on the
model of Lederer and Mills.?® As seen from Eq. (6.7),
Zerit 18 temperature-dependent. The temperature de-
pendence comes mainly from the temperature depen-
dence of X4° and X.°. Therefore, Eq. (6.7) or CD=0
also serves as an equation to determine the Curie tem-
perature for a given impurity concentration. In the
discussion which follows, when we refer to the experi-
ment, it is always assumed to be at the zero-temperature
limit.

In Ni,Pd; ., according to the experiment,* 6 of Xaji0y
is ~87. Then from Egs. (6.6) and (6.7), xerit should
equal [87—NX2/x 1. To reproduce the experi-
mental value of xerit=22 at.9, we would have to as-
sume NX;°/X.2=~240. This value for X seems to be too
large to be consistent with other experimental evidence
such as the lack of a sharp magnetic field dependence
of the magnetic susceptibility,” and the low-temperature
specific heats.*

Another interesting system is Pd;_,Rh,. This system
often has been treated as a typical case of the rigid-
band model. Recently, some experimental evidence?®®
against the simple rigid-band behavior was presented
and it seems that the use of simple rigid-band models
for interpreting the electronic structure of alloys is
being seriously questioned. We can discuss Pd;_.Rh,
alloy from the same point of view as the Pd;_.Ni, alloy.
We treat Rh in Pd as a localized impurity state. As we
put Rh into Pd, the X110y increases and 6~28.4° From
Egs. (6.6) and (6.7), and assuming NX%/X.° is on the
order of 1, ®. should be ~3 at.%,. Unlike PdNi, the
PdRh alloy never becomes ferromagnetic, however, and
at x=~35 at.9, the alloy susceptibility has a maximum
and decreases thereafter.

The failure of the simple use of Eqgs. (6.6) and (6.7)
in correlating the observed initial increase in the mag-
netic susceptibility and the critical impurity concen-
tration in PdNi and PdRh can be resolved using our
theory. X0 and X4 which appear in the CD, Eq. (6.2),
have a dependence on the impurity concentration.
From Egs. (5.33) and (5.34), the densities of states
appearing in X, and X,° are distorted by the presence
of finite concentration x of impurities. This additional
impurity concentration dependence of Xaioy through
X0 and X4° resolves the difficulty.

In Sec. IV, we discussed how p;(0) appearing in X.°
is modified from p;°(0). In this section, we have been
assuming X;°=X4% independent of the impurity site
i, which implies p;(0)=p4(0), independent of the 4.
Since we supposed only one kind of impurities are pres-

3 G. N. Rao, E. Matthias, and D. A. Shirley (unpublished).

49 R, Doclo, S. Foner, and A. Narath, J. Appl. Phys. 40, 1206
8966;; S. Foner and E. J. McNiff, Jr., Phys. Letters 29A, 28

969).
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ent in the system, in the single-impurity limit, each
impurity state is the same: p;°(0)= p4°(0), independent
of 7. By taking the average of the effect of the surround-
ing impurities over the random distribution of the
impurities, p4(0) can be written in the form (see Ap-
pendix)

pa(0)==2ps*(0) (1+x) , (6.8)

for small x. Here v is a constant whose magnitude is on
the order of 1. Using Eq. (6.8), X,° is given as

Xq'= p0) |_1
1—Up(O)L

+<1 Z Um0 +1>7x] . (6.9)

For [1—Ups®(0) "1, which seems to be the case in
PdNi or PdRh,

Xa"22X 0 14-[v/1—Upa°(0) I},

where X;%° is the real single-impurity-limit magnetic
susceptibility of an impurity?* and obtained from X,°
by replacing ps(0) with ps°(0). Equation (6.9") cor-
responds to taking into account the x dependence of
04(0) only in the denominator of X4°.

Similarly, for X%, Eq. (5.34), we obtain

(6.9")

0.°(0) 8
X 0= O ~x 00( —x) , (6.10)
1—1p2(0) 1—2p2(0
where § is defined by
pe2(0)=2p.°(0) (1+6) (6.11)

(see Appendix) and is a constant whose magnitude is
on the order of 1. X% (apart from a factor 2uz?) is the
magnetic susceptibility of the host metal without any
impurities: X,2°=p,%(0)/[1—1p.°(0)]. We have assumed
X%, as well as X%, are finite.

Substituting Egs. (6.9") and (6.10) into the equation
CD=0, we obtain an equation for the critical concen-
tration which is quadratic in «:

v
1—Upa"(0)

+ 1—~vjc°(7)):| =0

Correspondingly, the expression for the initial increase
rate of the alloys susceptibility, Eq. (6.6), is modified to

1 —xab(vxcoo)(UXd"“)l:1+x(

(6.12)

1 anlloy
= =ab(@X, ) (UX™)
X0 dx .
ATXdOO
Loy . (6.13)
X0 1—2p.°(0)

We reanalyze the experimental data on PdNi and
PdRh with the new Egs. (6.12) and (6.13). Let us first
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discuss PdNi. In Pd, we choose the exchange en-
hancement factor of the magnetic susceptibility
[1—299,°(0)] to be 10 and accordingly x,%9=0.
The exchange-enhancement factor for the impurity Ni
in Pd is expected to be greater than that of pure Pd,
and, therefore, we assume [1—Up;°(0)]'>10 and
UX3%>10. Although there remains great freedom in
choosing values for the remaining parameters in Eq.
(6.13), the following choice seems reasonable: §=87
ab(vX ) (UX,°) by assuming the second and third
terms on the right-hand side of Eq. (6.13) nearly cancels
each other, which means 62— since NX;%/X,% is
believed to be less than 10. After having reproduced 6,
to satisfy Eq. (6.12) with the experimentally observed
value of %1222 at.9),, we have to assume

v/[1=Upa"(0) J+6/[1—2p,°(0) J=~—20,

implying y=~—1.

We proceed to the case of PdRh. A convenient choice
is to assume ab(vX,%)(UX4%°)=220, which is reasonable
compared with the analysis in the above case of PdNi,
since UX;% of Ni is expected to be a few times bigger
than that of Rh. In order to reproduce the experimental
value of #2228, we have to assume

NX3%/x 9045/[1—vp.2(0) =8,

which implies that § is positive and =~ 3. Next, in order
to explain the fact that in this system Xaoy never
diverges and that at ¥2<5 at.9, the X,110y has a maximum
which is about twice that of the pure-Pd susceptibility,
we have to assume v/[1—Ups®(0)]468/[1—2vp.2(0)]
=—10, which implies y=<—1. The local enhancement
factor 1/[1—Ups°(0)] of the impurity Rh is considered
to be larger than that of the host metal Pd.

In Rh; .Ni., according to the experiment,® §==10.
This may be understood by comparison with the case of
Pd;_,Ni,. Since the magnetic susceptibility of Rh metal
is about 10 times smaller than that of Pd metal,
ab(vX %) (UX4*) in Rhy_,Ni, can be an order of magni-
tude smaller than in Pd;_,Ni,. Thus, ab(vX%)(UX,%)
<10. Since the exchange-enhancement factor of Rh
metal is =2, the contribution of the third term on the
right-hand side of Eq. (6.13) is £=0(1). Therefore, the
second term in Eq. (6.13) may contribute significantly
to 6. The experimentally observed .. of Ni in Rh is
~63 at.9,. Since our whole discussion is valid in the
small-impurity-concentration region, it would be in-
correct to discuss %eit from our Eq. (6.13). However, if
we assume @bvX,0UX;°=5 [accordingly NX;%0/X00
+8(1—2p.°(0))=<5 to reproduce §=107], and

v/[1—Upa®(0) ]+6/[1—2p.°(0) ]=2—0.76,

the value of x.is=039%, is obtained. It seems y and
8 have opposite signs and /[1—Ups2(0)] and
8/[1—1p,2(0)] nearly cancel each other to make the
sum rather small.

3739

The above analysis of the experimental data is far
from being unique. We should not be too critical at this
stage since even in pure Pd metal, for instance, we do
not have a good limit on the value of the exchange-
enhancement factor in spite of a great deal of experi-
mental and theoretical studies.** What is important to
stress is the qualitative aspect of our result such as the
nonlinear impurity concentration dependence of the
denominator of the alloy susceptibility which allows us
to explain various problems which have not been ex-
plained previously.

VII. CONCLUDING REMARKS

In this paper, we attempted to construct a theory of
transition-metal alloys based on the Anderson model.
Effort was made to consider coherently both the elec-
tronic structure and the electronic interaction. The
magnetic properties of some transitoin-metal alloys are
reasonably well explained by our theory. Recently, an
interesting neutron scattering experiment was done on
CuNi.®® Essentially, the following two facts were ob-
served by neutron diffraction. The first fact is that only
a tiny fraction of Ni atoms play the role of polarization
cloud centers. This seems to be related to the local-
environment effect discussed in Sec. IV. For instance,
we can assume that those Ni atoms for which all
nearest-neighbor sites are Ni have discontinuously
larger magnetic susceptibility than the other Ni’s.
Thus, in the ferromagnetic state, the central Ni atom
magnetizes more easily than the other Ni’s and becomes
the center of a polarization cloud. Second, from the
very large spatial range of this polarization cloud, we
may assume that the host susceptibility is greatly ex-
change enhanced. This kind of behavior was also studied
in this paper. Due to the interactions between the host
and the impurity, in certain cases the host susceptibility
can be greatly exchange enhanced. In Cu alloys, how-
ever, where the Coulomb interaction between host-
metal electrons is not as big as in Pd, we should take a
different approximation in handling our fundamental
equations, Eqgs. (5.31) and (5.32). Namely, the inter-
impurity interaction through ¢;; becomes more impor-
tant than in the case of Pd alloys.

Recently, there have been very lively discussions on
the nature of a localized moment in a metal. It was first
assumed that a localized moment is present in an im-
purity (s-d exchange model) and then the interaction
between a single localized moment and the conduction
electrons was considered to higher order on the s-d
exchange interaction (Kondo effect*?). Similar higher-
order effects in the single-impurity limit have also been

48, Foner and E. J. McNiff, Jr., Phys. Rev. Letters 19, 1438
(1967).

%2 J, Kondo, Progr. Theoret. Phys. (Kyoto) 32, 37 (1964).
For many recent references, see M. D. Daybell and W. A. Steyert,
Rev. Mod. Phys. 40 (1968).
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considered using the Anderson model®® and the Wolff
model.#* In this paper, we presented discussions for the
many impurity case within the simple Hartree-Fock
approximation. Those higher-order considerations made
in a single-impurity limit can be included in the present
discussions of the many-impurity case.
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APPENDIX: CALCULATION OF y AND §
Calculation of ¥

By introducing the simplification of the type of Eq.
(6.1) into Eq. (3.14), we obtain

(dir]diyt)o=[w—E—UN_—V?Fy(w) —Zi(w) I, (Al)

where, neglecting the direct-transfer terms for sim-
plicity [see Eq. (4.3)],

E,(w) = V4
w—EL—UN_—V?Fo(w)

X 2 Fij(w)Fiw) (A2)
i)

is the self-energy due to the interaction with other im-
purities and F;(w) is given by Eq. (3.16). In carrying
out the summation over the randomly distributed
impurities in Eq. (A2), we adopt the simplest approxi-
mation,

N

Y Fu@lue= — ¥

7 (1) N 7, all lattice points

FoFj, (A3)

where the prime on the summation indicates to exclude
7=0 from the summation. From Egs. (A2) and (A3),
Ny 1
V4
N w _Ed() —UN_— V2Fo(w)
X [ '—']\7F0/(w) —Fo(w) 2] .

Ei(w) =

(A4)

Note that Z;(w), which now is independent of 4, is pro-
portional to the impurity concentration x=No/N.

% For some references, see P. W. Anderson, in Many-Body
Physics, edited by C. DeWitt and R. Balian (Gordon and Breach,
New York, 1968), p. 229.

# H. Suhl, Phys. Rev. Letters 19, 442 (1967); M. Levine and
H. Suhl, Phys. Rev. 171, 567 (1968).
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For the small impurity concentration limit, Eq. (A1)
may be expanded as
(diy|diyNo=Ga (@) +2i@)[Gay (@) P+ - - -
=G (w)+aV{Ga () PP

X[=NF(w)=Fo(w)*]+---, (AS)
where for brevity we introduced
Gi¥(w)=1/[o—Es"—UN_—V?Fo(w)]. (A6)

By a procedure similar to Eq. (5.8’), we obtain from Eq.
(AS)

pa(w) =pa’(w) +xV4( _ 1)

XIm{[Gay*(w) PL—NFo'(0) —Fo(w)*]} (A7)
or v, defined in Eq. (6.8),

1
V- Im{[Gai"(0) PLNF ' (0)+F0(0)]} . (A8)

™

)
Let us perform a rough order-of-magnitude estimate of
v. If we assume the impurity level is near the Fermi
surface, G4,.°(0)= —1mps°(0) with a vanishing real part.
Since O[| NFy'(0)| J~O[| Fo(0)2] J=2N?%/er?, and ps°(0)
~1/A=er/V2N, we obtain y==20(1).

If the impurity concentration « is not low, Eq. (A7)
is not a good approximation and we have to handle
Eq. (A1) as we did in Sec. IV.

Calculation of d

From Eq. (5.28), with the simplification of the type
used in Eq. (6.1), we obtain

pe2(0) = pc(0) —x[NV*({(pal "))+ {{1a°c"")))
FNVAL(O) (L pd )+ o 1d))) ]
=p(0)(1+6x),
with

6= —[1/pL(0) INV({(pa"L " N)+{T ")) -

In Eq. (A10), we neglected the higher-order terms in V.

A rough order-of-magnitude estimate of § can be done
as we did for v. For instance, if we assume the first term
in the bracket of Eq. (A10) is dominant and the width
of the localized state Ag is smaller than the bandwidth
of the host-metal conduction electrons or ep, the magni-
tude of v is estimated to be ~0(A¢/er).

(A9)

(A10)



